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* Markov Hierarchical Variational Auto Encoders (MHVAEs)
* Autoregressive Encoder and Autoregressive Decoder of an MHVAE
e Derivation of the ELBO of an MHVAE

 Diffusion Models as MHVAEs with a Linear Gaussian Autoregressive Latent
Space
* Forward Diffusion Process

e Reverse Diffusion Process
e ELBO for Diffusion Models as a particular case of the ELBO for MHVAEs

* Implementation Details: UNet architecture, Training and Sampling Strategies

* Application of Diffusion Models
 Stable Diffusion: Text-Conditioned Diffusion Model
* ControlNet: Multimodal Control for Consistent Synthesis



Diffusion Model as MHVAEs with Gaussian Latents

* A Diffusion Model is an MHVAE where the latent variables x;.- have the same
dimension as the data x,, and the encoder q4 (x1.7 | X9 ) = T4 qp (X | Xe—q)
is not learned, but it is pre-specified as a linear Gaussian model

qu(xt | Xe—1) = N (xg; Jogxe—q, (1 — o))
:\/O‘_txt—1+\/1_atft» €. ~ N(€;0,1)

* The parameter a; is chosen such that x; ~ N(xT; 0,1) is a standard Gaussian
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The Forward Process of Diffusion Model

e Consider the formulation of a single noising step:

— \/a_txt_l + \/1 — ¢t €¢, € ~ N(Et; O,I)
* Note x; | xo and x; | x,_; are Gaussian, hence x; | xo ~ N (x¢; ug(xg), Zq(x0)).

* We can compute pu,(xo) = E[ x; | xq ], recursively as follows:

E[xtlxo]:IE-\/_xt 1+\/1_at6t‘x0] ______ L0
=@ E[x_1 | xo] + /1 — a.Ele]
= Vo E[ x| x0 ]
= Va/a—1 E[ x5 | x¢ ]
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The Forward Process of Diffusion Model

* We can compute Z,(xq) = Var[ x; | xq |, recursively as follows:

Var(x; | xo ) = Var( J&exe_1 + /1 — aze; | xo)
= a;Var(x;_y | xo) + (1 — a;) Var(e;)
=a,Var(x,—1 [ xg) + (1 —ay) 1

* That is:
Var(x; | xo) =a; o Var(x—; 1 xo) + (1 —a_) Il + (1 —ap) 1
= Var(x,_; | xo ) + (1 — o)1
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The Forward Process of Diffusion Model

* We have shown that x; is a linear Gaussian transformation of x; with scheduled
randomness (controlled by a;) drawn from a standard normal distribution, i.e.,

Xt | xp ~ N(xt;\/a:txO»( )I)
* Therefore, given x,, we can sample x; directly without having to generate all x;’s:
Xe = [ @exo + 4/ & & ~N(&;0,D
* Moreover, we can also generate x, from x; as
xo= (¢ —J1-a &)/\J&@, &~ N(&;0,D

* This suggests we can reverse the noising process. However, exact reversal
requires knowing the exact ;. The reverse diffusion process is designed to
predict the noise ¢, that needs to be added to x; to generate x;.




The Reverse Diffusion Process

* We have designed a forward diffusion process g4 ( x; | x¢;_; ) that

* At each step adds Gaussian noise to the input until it becomes pure noise
* Allows us to sample x; | xo without having to compute x; recursively
* Allows us to sample x4 | x; without having to compute x; recursively

* We now need to design a reverse diffusion process pg( x;_; | x; ) that makes the
calculation of the ELBO easy. We do this by

* Understanding the structure of g (x; | X )
* Making pg( x¢_1 | x¢ ) match that structure

* Recall the ELBO is given by:

T
- ]qub(xﬂxo)[logpe (xo 121)] = D1 (qu(xT | %0) || pe(xT)) - z [Eq¢(xt|x0) [DKL (qu(xt—l | x¢, %0 ) || Po(Xe—1 | X ))]

t=2

reconstruction term



ELBO for Diffusion Model: Score Matching Term

* To compute the third term, we need
q(xe | x¢—1,%0) q(x¢—1 | X0) _ N (e vagxe—q, (1 — a) )N (xe—g; /=10, (1 — @—7)])

q(xe—1 | Xt, %9 ) =

q(x; | xp) ]\f(xt;ﬂ/a_txo, (l—a_t)l)
Xt 112
Il xe—ySxeall?) N xt_l—\/mxouZ) el xe-mglTy (_ [E m»couZ)
x eXp( 2(1-ay) ) &P ( 20-a ) P 2(1-ay) exp 20-@p)

* Applying the product rule, we get q(x;_1 | x¢,x0) = N (x¢_q; g (x0), 2,), Where

~1 S
at 1 (1—-a)( —ao7)
Zq — COV(xt_l | Xt x0)= I + I — — I
1_at 1_at_1 1_at

— _ at Xt 1 ) q(x; | xe—1) = N Qg5 v/arxe_q, (1 —ap)l)

Hq (e, Xo) = E(xe—q | X, X0 ) = 24 (1—at1 i T 1ma Y %e-1%o qCxe 1 %) = W (e Toxo, (1 — @)

NQC; 1, Z1) NV (x; Mz,zg) o< V' (x; 1, %)
_ (-a)(-ar-1) I VOt o V-1 o) = Var(l—ar—)xe+ar—1(1—a)xg A=S G +35 ), 5= CErlvzyHt
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ELBO for Ditf

usion Model: Decoder Matches Encoder

* Recall KL divergence for Gaussians

1
Dk1, (N(x e Zy) || N(y Hy, y)) [log

y

%

—d+tr(2 iy o)+ (1 = 1) 25 (my - Mx)]

* Choosing mean of pg(x;—1 | x;) to match form of mean of g(x;—_1 | x¢, x0)

Vo (1 — o —)xe + V a1 (1—ap)

Vo (1 —a—)x +/a—1 (1 — ap) X (x, £)

(xtr xO) =

= #9 (xt; t) =

1-a 1-a,

* Choosing variance of pg(x;_;1 | x;) to match exactly variance of q(x;_1 | x¢, x¢)

e The ELBO reduces to:

1—o:)(1— o4 1—0o4)(1— o,
_U-a)-d), o (A-wd-a),
1—O(t 1—O(t

(1—o)(1—0o—y)

2 —
oq(t) -

DKL(CI(xt—1 | ¢, %0 ) |1 Po(Xp—q | X¢ )) = Dy, (N(xt—ﬁ.uq(xt: Xo), Zq)|| N(xt—ﬁﬂe(xt: t):zq))
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Reparameterization as an Alternative Form for ELBO

* Plugging x, = x”'_vja;“_’fg_t into the denoising transition mean p, (x¢, xo), we obtain:
t
Va1 — ae_1)xe + /@1 (1 — ag)xg
— Qg T e
B _ Xp — — Q€
Var (1 —a_1)xe + /a1 (1 — ap) d = A
t
B 1—a,
1 - C_(t 1 - aft _
= — X+ — €
(]i_at)\/atlt \/1_&1-\/“1- '

= —X¢ — €¢
V& T—ana
* Choosing the mean and variance of p to match the mean and variance of q:
1 1—a; (1—a)@d — o)
g (xp, t) = —x; — €, Yo(t) = — I
6\t \/a_t t \/1_—@\/“_1: t ( ) 1 — oy




The Reverse Diffusion Process for DDPM

* Finally, putting it all together, the reverse diffusion process is given by:

Po(Xe—q | X¢) ~ N (Xp—q; U (Xt ), Zg (T))
* Therefore, we generate an image via the reverse diffusion process

1 1_at

Xt—1 — —F— Xt_\/l—CYt

N +\/Eet

* Where x; ~ N (x7;0,1), €, ~ N(€;0,1).



Progressive Denoising or Direct Reconstruction?

* The model predicts the noise to be removed in each step by optimizing the score
matching term. This reduces to minimizing the difference between the predicted
noise and the ground-truth schedule noise:

arggnin DKL(CI(xt—l | ¢, %0) Il Po(xe—1 | xt))

= argmin Dk, (N(Xt—l;,uq;zq (t)) | N(xt—1i/19;2q(t)))

Zaq(t) \z' 1/1—07“/ 1/1 —Qer[At
_ (1-a)? A
= arg;nln TAGIEAL [Ileo Eg(x, O)I12]

* Predicting x, from a highly noisy x; in one step is complex, as the signal is
dominated by significant noise for large t.

* Predicting the noise at each step and refining x; towards x, makes learning more
manageable (e.g., it converges faster or it requires a smaller network capacity).



